LA

Pk

v
;.’.— “
. i - 3 l}.l
b ‘I l 'h
s

. [

TRANSLATIONS 1 March 1971

ON SUMMATION OF SEGUENCES
by

B.I, ~olubov

translated by L. Holtschlag from

. Izvestiya Vysshikh Uchebnykh Zavedenii, Matematika
LBulletin of Higher Educational Institutions, Mathematics)
No. 4(41), pp. 47-55 (1964)

SUMMARY

On the basis of the one-to-cne correspondence of Buck and Puilard
(if x £ (0,1 ané x = 0, ;'..1(x) az(x)... is the expansion of the number x into

an infinite dyadic fraction, ther x ~ ;nkk, where the o, are such that

2 {3 =1, :n(x) = 0 whea n # 0 (k = 1,2,...)), previous results of various

Ay

authors are generalized and analogous theorems are formulated for pormuta-
tions of numerical series and sequences. Given iu addition is a numdbar of
theorems involviag functional series and sequences.
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Cn the basis 9f the one-to-one correspondence of Buck and Pollard
(1f x € (0,1] and x = O, a (%) 3,{x)... is the expiasion of the number x into
an infinite dyadic fraction, then x ~ %nkﬁ, where the n, are such that

{(xy = 1, aﬂ(x) = 0 when n # nk (k = 1,2,...)), previous results of various
1

tions of numerical series and sequences. Given in acddition is a number of

theorems involving functional series and sequences.
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ON SUMMATION OF SEQUENCES )

by

B. I. Golubov

In [ 1] Buc< and Pollard used the following well-krown one~to-one
correspondence between numbers of the interval (0,1] and subsequences of a natural
series. Tf x € (0,1} am! x = O, al(x)az(x)... is the decomposition of the numbers

*%)

x into an infinite

dyadic fraction, then x N»[nk}, where n, are such that

ank(x) = 1,2 (x) =0 forn 7 o, (k=1,2,...). It ig e2sy tv see that the re-

verse iz zlso true, that is, a certain point x € (G,1] correspends, acccrding to
this very same law, tc every rigorously increasing sequence {mk}, and, conge-
quently, the correspondence is one-to-one. In the present note, stdrting with
this correspendence, some results contaived in [1-5,12] are generalized znd anaio-
gous theorems are formulated for permmtaticns of numerical series and sequences.
Yereover, a number of theorems are cited in which functional series and sequences
are invcolved.

We intvoduce the following nctation. 1f {sﬂ} is a2 cortain sequence,
then its subsequence, defined by the nusber x £ (0,1), will de denoted by

14

{s(n,x): and the set of limit points §s“5 by §3n§ . Furthermore, if T = ian’k€

*) Translated from fzv. VUZ, ¥at. [Bull. Higher Educat. .nsts., Math.], No. &(41),
op. 47-35 (1964).

**)By an iniinite dyadic fraction is meant a fractior whose signs include an
infinite sct of ones.
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is a regular sumuation method, ve depote %3{x)= pX g, s (k. x).

Ras?

The following theorcm generalizes the result of Buck and Pollard ([1],

theore» 1, and also [7], p. 404, theorem 5.6).

Theorem 1. For every sequence {sn} there is found a set Q C (6,11, of

*
ccmplete measure and of the second category ) on (9,1], such that

is(a, x)f ={s,}’ wher x € Q.

Proof. Let {nkj be an arbitrary rigorousiy increasing sequence of
positive numbers ocutside of which there remafns an infinite set of terms of the
natural seriee, We take two real numbers a and b (a < b} and form the sequence
{un}, setting u = a vhen n = o, and u =~ b when n # o, (k= 1,2,...}. As follows

from the theorem 1 of Buck and Pollard [1], @=lima(n, X)<limu(z, X}==b aimost
s "

everywhere on (0,1}. Hence, whatever the rigcrously increasing seguence {nkj
that exhausts the whole natural series or that forms a part of it, alwost all
subsequences of the latter always costain an {nfinite set of terms from {nk i,
each its own.

From {sa}' we choose not wmore than a countable set of pointe {vi’; dense

in {sn:?'. For every point v there exists a sequence inéi)} such that

lims (g) = v,. As can bt seen from the remark made above, there exists a set
k "k

TS P

Ind

A C (3,1] of full measure such that v, € {s(n,x)}” wnea x € A_. We set A = TA, -

i i

Then mes A = 1 and {a{u,x)} = {sn;" wher x € A. In the same way, relying on the

Al It y",ll T

theorem of Keogh and Petersen [3] for ths case when T is convergence, we find

e 4,
Sl

a second-category set B < (0,1] such that {s(n,x)} > {sn}' vhen x € B. Setting
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By a second-category set is meant a set which is the complement of & first-
category set.
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Q = A+ B, we complete the proof of the theorew, since the rewersz inequality

{a(n,x}}" {:n}' 18 obviously vaiid for all x.

Remark 1. L&t us show that the theorem of Buck and Pollard, which is
generalized by theorem 1, permits determiuation of the error of an assertion of
Goffman and Petersen coatainzd in their paper {12]. 1In their articie the authors
introduce the concept of a submethod of the regular summat.on method. Namely:

1€ T = %an m” is the regular method, every method Tinkj defired by the matrix

i B} b
1a ,mﬁ’ where {nk; is an arbitrsry subseauence of the natural series, is said to

2
be a submethod of T. Thus, every submethod iz defined by a subsequence {nk; of
the natural series. Conseguently, the corraspondesnce x ~ {nki of Buck and Pollard

peraits us to establish a one-to-one correspoadence between the set of all sub-

methods T ink} of the method T and the set of points x £ (0,1]. We denote

T{nk} = T{x), where x ~'{nk}. Then theorem 5 from [ 13] can be formulated in the
foilowing way:

Theorem. Let T be the regular method, and let {sn} be a bounded sequence,

not summable by the method T. If Q is the set of all points x £ (0,1], for each

of which T{x) sums {sa;, then the measure of the set Q is aiways equal to 0 or 1

and both cises are possible.

Ac a matter of fact; as follows from theorem ! (or from the weaker
theorer of Fuck &nd Pollard), mes Q = 0 always. Ve nrce also that theorem 3
from the name article [13] of Goffman and Petersen caunct be considered proved
either, since there is an exror in its proof.

The following is & strengthening of the theorems of Agnew {2} and

Keogh and Petersen {3,4].
Theorea 2. If ]sn§ £C(an=1,2,...), then for every rzgular method

T =& . there exists a set Q of second category on (0,1] such that

{oi (<)’ Dls,}’ vhea x € Q. (1)
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. But if {s Jj is zot bounded, the sssertion of the theorem is pot true.

Proof. Lat §sn§ € {op«1,2,...). %hen, without loss of generality it

csa be asaumed that the method T = ﬂan o 28 finite-vowed. According to the
4

; theorem of Agnew [2], there exists s poirt %y € €0,1] such that {snix{;}-}' o {sn}'.

3 LeC us show that the very same inciusion {3 valid for all points of a certain

set D C (8,1], everywhere dense in (0,il, i.e. {sn(x)}' o {sn}' when x € D. y
Indeed, let k be an arbitrary positive number and let the point %  be such that
-’xn(x') © @ (%y) when u > k, vhile the first k dyadic signs of the expansion X

are arbitrary, but fixed. Then, by varying the signs of an{x"} for k< an s 2,

L et 1

it is possible to get a point x“ at which the total number of ones among the first

2k signs of the expanrsion coincides with the number of ones asong the first 2k
signs of the expansion Xy- For this point, obviously, {sn x)} > {sn;", Since

the naturzl index k is arbitrary, the set D of 211 x” that can be obtained in the

indicated mannezr, starting with the point. x., i8 everyshere dense in (0,1].

03

How let {um}be no mere than a countable set of points from {snj', dense

bl St R e A

st

in {sn_i". We denote by s: a the set of all points x € (0,1], for each of which
»

there exists a nusber u = y(x) > n such thet §5u(x) - umi %. Since the methed
T= ’3&‘1 k§§ is supposed to be finite-rowed, all the sets s;‘ o are open. Obviously,
* »

P

iy

also, ail S: r - D. It {s not difficuit 2o show %that the set Qo n St o
’
am ok

satisfies the conditions of the theorem. Going on to the proof of its second

= *
part, we take thn aeries 2 — 1Pt e, wy )ak > 0, and the regular method

Awel

- i = (-1370 x n.
T :an,a‘i’ where % 0 vhen = < n and LI -1y @, whenom:an

If we set ln = O.;l {(n=1,2,...), then an(x) will not have meaning for any n and

x whatever. Indeed, if x ~ {nk,s, then

9, (x) = 2 “&h‘n. -'2 (— l).‘.‘b-uu‘a‘ - 2 (- 1)‘.":%&’
d=] L] Resilt

&

. *) The gign {(}) means acnotonic decrease {incresae) of the corcesponding aequence'.
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By virtue of the condition akz, the teras of éﬁe last series cannot be less than
unity ia absolute value, {.e, cn(x) are not meaningful. Tha theorem is completely
proved.

Remark 2. Generally speaking, inclusion (1) cannot be replaced by an
equality. 1Indeed, let us choese an arbitrary diverging bounded sequence {sn} for
whick {sn}' is not a connected set, and as the method T let us choose the method
{C, 1). As is well known [6], the set éjnj * for the method (C, 1) and for the
bounded sequences {sn} is connected; and since {su;' is not connected in the
given example, the equality in (1} does not hold.

Remark 3. The measure oxX the set Q in theorem 2 can be equal to 0 and 1.
For example, if T = {€,1} and {snj is a certain divergent bounded (C,l)-summabie
sequence, then, as foilows from theorem 2 of Buck and Pollacd [1], almost all
the subsequences {s(nyx}} are also (C,1)-summable. Consequently. in this case
mes Q ~ 0. But if T {s cuaverpence, then, according to theorem 1, we have

mes @ » 1. Whether there exist T methods for which 0 < mes Q < 1, we do not know.

Now let us formulate a result on the summstion of sequences of 0's and 1's.

¢ -l ] . -
If x € (0,1] and T la, [ 1s a regular method, then we 8et oip x)m 3 4, 48 (%),
Rea}

*
Theoren 3. ) For every regular method T there 2xists & set Q of second

category cn (0,1] such that
*k
lota, Y 11 08 ™) uhen x € Q.
Proof. Accoxding to Agrew's theuvrem [2], for & certain point x, € 0,1]

we have %3(n.x°)}' = {1;0;. This inclusion is preserved if at x, we arbitrarily

*) This theorem generalizes theorem (2.3) of Hill.

**) {1;0; means & set of two elements: 1 and G.
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change several first coordinates. Therefore, there is found a set D, everywhere

dense on (0,11, such that {c{n,x}}" D {1;0} for x € D. Let {um} be a diverging

sdequence of 0's and l's.We lzt Si o (n,m,k = 1,2,...) dewote the set of all
prints x € (0,1], for each of which there exiats a i = (x) > n such that
are open (since, without loss of generality,

»
the method T can be considered finite-rowed) and :‘.ll:l

I (%) - unl < 1/k. Obviously, S:

mD D o,k =1,2,...).

Then, Q om n S:vm is the desired second-category set. The theorem is proved.
A

Remark 4. The measure of the set Q in the given theorem can be cnly
1 or N, since this sec: is homogeneous (the definition of a homogeneous set is
e .. - - .
;e given in [1, see aiso t71, p. 403). ‘The flrst case is realized, e.g., when the

method T is convergence, and the second vhen T = (C,1), since in this case, accord-

"
TR

ing to Borel's theorem (8], we have {o(n,x)}” = {1/2} almost everywhere on (0,1].

WA

.a. .b Remark 5. According to Khinchin's law of the iterated logaritim [9],
. 9
. 53 ) n 3
- ,\.ﬂ(x)--—g—o :;,
oa the set E, C (0,1] of complete measure jim - =1, where v (x) is =

s Vinigiga)k
the number of zeros among the first n 8igns of the dyadic expansion x. But

L.
vi{xy=n — }:a,(x) and, applving the preceding theorem with T = (C,1), we get

Al
a n
Ya{xj-> 7= v {X) — =
2 Toog £ > i
Urg — - - T 2 ... for x £ G, where Q is a certain
= n 1) a

”

seccrd~category set on (0,1]. Hence it follows that the set EO in ghinchin's
*
theorem is of the first category ), althnugh {t iz of camplete weasure.

Tsitroduced in the definition of the ccacept of density of s sequence of

*) Note added in proof. Recently it was made known to the author that this
cesult follows from theorem 2 of [14].
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a natural series in the quantity dn{nk} - Eé&l’ where N(n) is the number of

terms of the given sequences {nkj that do not exceed n. If lim an{nk} = d exiats,
then d is called the density of the sequence {nkln in the natural series. 1If the
latter i1imit does not exist, then the upper density d = iga dn(nk} and the lower

density d = lim dn{nk} are introduced. Using the correspondznce introduced ebove,
n

{nk} ~ x € (0,1], we get dn{”k}adn(f‘)="i'2%(x)-

Lo

According to Borel's theorem (8], we have I%m dn(x) = 1/2 almost
everywhere ou (0,11, that is, almost all the subsequences of a natural series
tave density, and it i5 equal to 1/2 for almost all of them. Insofar as the cat-
egory is concerned, the situation is different. Nawely: {dn(x)}' = [90,1] for
x € Q, where Q € (0,1] is a certain second-category set. In fact, according to
thecrem 3, if we set T = (C,1)in {t, we have {dn(x)j' > {1;0} for x € Q < (0,1],
where Q ia of the second category. But, as was already noted in remark 2, the set
tznj'is connected for the methol (C,t) applied to bounded sequences; therefore,
{dn(x)}' > [e,1] for x € 0. But since 0 s 6 (x) < i, we find that {dn(x)j' =10,1]
for x £ Q, which ls what was statei. Thus, a second-category sat of subsequences
of a natural series does not have density; moreover, d(x) = 0, Ekx) = 1ona
second~category set.

Now let A(x) be a subsequence, defined by the number x € (0,11, of a
natursl seriec. Let A(Xx)A(y) denote a sequence (in increasing order) whose terxms
are all elements common to A(x) 2nd A(y). The sequence A{x)A(y) may prove to be

finite or empty, that {s, not having even one term. Let dn(A(x)A(y)/A(x)) denote

the number of terx=s of thea sequence A(x)A{y) amcng the first n terms of the sequence

A(x}, divided by n, and let dﬁ(A(x)) be the number of terms, divided by n, of the
sequence A{x) amcng the €irst n positive numbers. The quantities dn(A{x)Aiy)/A(x})
chatacteyize the “"distribution” of the seguence A(x)A(Y) in A{x) and the quan-

titiss dn{A(x)) the "distxibution” of the sequenne A(x) itself in & natura. series.

e e e
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=
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Theorem 4. For any point x, € (0,1] there cxists a set Q of complete

measure on (0,1] such that

{dy (A (%) A(xMA ()Y ={0,(A(x))y when x€Q. (2)

Proof. It is not difficult to see that
’!‘ Y 4
¥ (x0) 2% (%)
{4, AX) A (XA (X))} = | =
E’! (x)

Ram}

But ak(x) - % {1- rk(x)] almost everywhere, where rk(x) k = 1,2,...) are Rade-

macker functions ([10], p. 55), and the preceding equality can be represented as

n "
1 i
—_ —— T e
o .E E 1y () . E; 3y {Xo) ry (x)

K

{da (AL A(xMA ()Y =

e {x)

-

L
n
&

LJ
According to iemma 5 of Buck and Pollard [1], lim -I;E 57 (x) =0 elwaye
L]

Aw]
© 2
almost everywhere provided E -:-:-—< oo, Therefore, there exists a set Q C {C,1]
he]
of complete measure such that
1 X -
_ii‘mTE &, (x;) 74 (x) =0, ii’m—:‘-z ro(%)=0 when x € Q. &)
Rel Ree]

iy .
If wa take into account the fact that o (A (xn))u::g e, (x,), thea (2)
owt

follows easily from (3) and (4). The theorem iz proved.

Roughly speaking, the meaning of this thecrem is that the "distribution®
of terme of the fixed sequence ink} in almoat all subsequences of & naturai series

is the same ag th: “distribution" of the sequence énk; itself {n a natural series,

~8-
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Let us now apply ourselves to functional sequences. If {nn(t)} i= &

sequence of functions given on 4 certain set, thea {s:(t)} denotes {ts subsequence,

defined by the number x € (0,1].

Theorem 5. If the scquence {sn(t)} uf functions measurable and almost

*
everywhere finite on the set )E diverges almost everywhere cn E, there exists &

- X
second-category set Q C (0,1] such that the sequences {sa(t)} converge almost

v everywhera on E for every x £ Q,

Proof. We introduce the notation

hm sy (t) == Itm Im sup si{tr= hm Hm Fra(f)e= lm Falt)=F*,
A M MPADR
: 5

lim lim sk (6} = nm lim Inf sp(f) = lxm lim}m = l*n/ W= R0

m maRon

We shall assume that Fl(t} api f (t) are finite almost everywhere on E. Without

this assumption, only several technical complications arise in the prosf.

Let ¢, - 0 and ¢ € > ¥, According to the condition of the theoream,

k

F () - fl(t) > (0 almost everywhere on E; therefore, for any &, there exists an

k

@, > 0 such that for the set E, = E{t:F (t) ~ £ (¢) >a,} we have

k k

R 2 RN

piginy

mes (£~ E) <s,. (6)

P

b

We dencte by k M,k = 1,2,...) the set of all x € {0,1] for cach of which there
Ry

exists a set

E} 4E, where mes{E,—Fia)<sa )

=

and indexes Z{x), N(x), uf{x}, v(x) 2 N, (T =7, u 2 V) such that

' Fal—jhw>3 for te&f,. )
3 Obviously, every set R§ {3 open. Let us show that
. REDR (N d=1,2,.), {9

*)

We note that the ivergence of 2 sequence st a given point {s understood in
the sense that the upper and iower limite are not cqual to each other. But
if they coincide, although heing equal to += (~»), the sequence i¥ considered
to be convergent,
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where R is the set of all dyadic rational points from (0,1]. Let us fix arbitrary

¥ and k, and also x € R. According to (5) and Egcrov's theorem, we find a set

‘ ‘ ) = b3 £ i
EN,ka EN’R(x} and an index 7} = T{(x) = N for which
mes (£~ En, o) < -'fl- and iffx(f)-“F"(t)l<-i;£ for t¢Ena. (16)

”

Tn exactly the same way it is possible to find a set E;" i = Ey (%) and an index
b ?

£ =2g(x) 2 N, £ 2 1, such that
mes (£, — Ex.») <—2-, and |Fat)— Fi(01< o for (EEma. (1)

As foliows from (10) and (11)

’ » A
[Fa(t)— F*]< %5' for tCEN2ENna=Ens, and

mes (E,—EN_.)<_%_, v . (12)
Analogously it is possible to construct a set [Ey y=Ey r(x) <E,
such that for several indexes u(x), v{x) =z N, w =2 Vv, we will have
[/m (D) --f-'(t)l(ii for 15}:'-”’&' and mes(E,—bYN,,)<_'§"—, (13)
From (12) and {(13) we get
WO —FHO>F O~ 0~ for tCEvaEns=Efa, (14)

where mes (Ek - E: k) < e Taking into accsunt the equality Ek = E{t:Ex(t) -
3

fx(t) > ak} for all x € R, where 1‘-.:. W & Ek’ from (14} we get
3

F&(t)—-f;f.(t))-fz?- for t€EkRa, and mes(E,—EX ) <en.
By this very fact inclusion (9) is proved.

Thus, all sets R; are open and everywhere dense on (0,1]. Hence, tie
set Q= ]] RV 1is of second category in {0,1]. 1let us show that the set Q
Nk

satisfies the conditicns of the theorem. Let x4 € Q, and E"ufi;m_fiN?fEﬁj A

According to (6),{7) and the conditiou € ™ @, we have wmes Ex" = meg £, Jet us

show that ‘:sx‘-’ (t)] diverges on E°. Let ¢, € Ex° and lim E‘x" = E}’. Then
k 0 N N,k '3

=10~

=
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there is found an index ko - ko(to) sat{sfying the condition to € E:i. From

this, in turn, follows the existence of a sequence of indexes {Ni} - {Ni(to)}

such that € € z;? g, (1 = 1,2,...). But this incluston, {n conjunction with (8),
i’

a,
yields Fx°(t0) ~ fxb(to) 2 —%1 . Since %, € Q and ty € EX are arbitrary, while

mes Ex° = mes E, the theorzm {s proved.

Theorem 5 admits of the following equivaient forwulation adjoining

Tauber~type theorems.

Theorem 5°. 1f the seguence {s {(t)j of fuoctions measurable ang almost

everywhere finite on the set E is such that there exists a set Q C (0,1] of

B

~

%
second category and that the sequences {sn(t)} coaverge almost everywhere on

for every » € Q, then {sn(:}} convexges slmost averywhers on E.

1t is useful to note that here the cunvergence set of the sequence

{sn(t)z depends, generally speaking, on x. The theorem of Keogh and Petersen [ 3]

may suggest that theorem 5  admits of such a generalization. If the sequence

{an(t3} of functions measurable and almoat everywhere finite on the set E and the

regular method T = ﬂan ki are such that there exists a second-category set
»

Q < (0,1] and that the sequences is:(t)} are summed by the T method almost every-

where on E for everv x € Q, then {sn(t)} converges almost everywhere on E. But

such a generalization is not valid.

given in the review to the Russian translation of the book of R. Cooke "Infinite

Matrices and Sequence Spaces” (71, p. 402, theorem 5.4).

Now let us consider rearrangements. Let y = {n;} ad y” = {n;j be
two rearrangements of the numbers of a natural sceries, We determine the distance

between them by means ¢f the Fréchet metric:

ey ¥ =

1 Img=n,l
———
o i+iny—nl
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This follows from the theorem of P.L. Ul'yanov,
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Then the set P of all rearrangements will be a metri: Baire spece (not cemplete)

4
i

of the sacond cetegory [11]. FPaor the regular method T = !§sn k*! snd the sequence

LA S S

{s“} we sat
c.(y) = 2 6...3," ’

[ 2591
ifys= {nk} is the rearrangement of the natural series. The following is an
analog of theorem 2.

Theorem 6. Lf T = la_ [l is a regular method, and lsn; $C (n=1,2,...),
14

then there exists a set U of the second category in P such that {s_(y)}" > {5}’

when y € U.
This theorem partially generalizes theorem &4 of [12].

The following i3 an analog of theorem 5 for series.

Ed
Theorem 7. If the series E u, (), where un(t) are measurable functions,
L
almost everywhere finite on the set E, is such that after some rearrangement of

terms it diverges almost everywhere on E, there exists a set U of the second

e

category in P such that the series i u, (£) diverges almost everywhere on E for
N
4
.. Aol
every mkj =y €Y,
Theorem 7 can be stated in the following equivalent form:

Theorem 7 . If the series f: u, (p), (all un(t) are megsurable and

Rwm]

2lmost everywhere finite on E} is such that therw exists a set U of the second

{
category in P and the series X Ha, ) converge aluost evervwhere on E for every
R4S i . 28 & oL

{nk; = y € U, then the series Y 4 (sy after any rearrangement of terms con-

ral -
verges almost everywhere on E, i.e. Y ou (g Sonverges unconditionally almost

8wl

everywhere on E.

For the rearrangements it i{s possible to introduce quantities dn(y)
analogous to dn(x) for the subsequences. We denote by N(n,y) the number of terms
of the rearrangement y = {nk} arong the f{i{rst n nf its terms that do not exceed

n sad we set dn(y) = ﬁgt-:-:ﬂ

e o
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Theorem 8. There exists & set U of the second category in P such that

£
2
=

when y € U we have {dn(y)}'- {o0,1].

We shall omit the proofs of thzorcems 6, 7 and &, in view of their com-

plete analegy with the proofs of the correaponding assections for sudsequences.

In conclusion the author expresses his gratitude to Prof. P.L. Ul'yanov

T e

for his constant interest in this work and for his valuable comments.
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